PREDICTING SUSCEPTIBILITY TO SOCIAL BOTS ON TWITTER

Black Hat USA 2013

Presented by: Chris Sumner (TheSuggmeister), Randall Wald
Date: Wednesday July 31, 2013
Time: 17:00 - 18:00
Location: Roman 4

Are some Twitter users more naturally predisposed to interacting with social bots and can social bot creators exploit this knowledge to increase the odds of getting a response?

Social bots are growing more intelligent, moving beyond simple reposts of boilerplate ad content to attempt to engage with users and then exploit this trust to promote a product or agenda. While much research has focused on how to identify such bots in the process of spam detection, less research has looked at the other side of the question—detecting users likely to be fooled by bots. This talk provides a summary of research and developments in the social bots arms race before sharing results of our experiment examining user susceptibility.

We find that a users’ Klout score, friends count, and followers count are most predictive of whether a user will interact with a bot, and that the Random Forest algorithm produces the best classifier, when used in conjunction with appropriate feature ranking algorithms. With this knowledge, social bot creators could significantly reduce the chance of targeting users who are unlikely to interact.

Users displaying higher levels of extraversion were more likely to interact with our social bots. This may have implications for eLearning based awareness training as users higher in extraversion have been shown to perform better when they have great control of the learning environment.

Overall, these results show promise for helping understand which users are most vulnerable to social bots.

Chris Sumner

Chris is a co-founder of the not-for-profit Online Privacy Foundation who actively participate in and contribute to the emerging discipline of Social Media Behavioral Residue research. Chris has previously spoken on this area of research at conferences including Black Hat, DEF CON, the European Conference on Personality and the International Conference on Machine Learning and Applications.

Randall Wald

Dr. Randall Wald received his B.S. in Biology from the California Institute of Technology and his Ph.D. in Computer Science from Florida Atlantic University. Although he began his scientific career in the field of synthetic biology, more recently he has studied the application of data mining and machine learning towards a wide range of application domains, including bioinformatics, social network profile mining, machine condition monitoring (including remote ocean turbines and battery backup systems), and software engineering.


KhanFu - Mobile schedules for INFOSEC conferences.
Mobile interface | Alternate Formats